How Data Management and Data Governance Support Big Data ROI

According to Aberdeen Group (source: Data Management for BI: Fueling the Analytical Engine with High-Octane Information), best-in-class companies take 12 days on average to integrate new data sources into their analytical systems; industry average companies take 60 days; and, laggards 143 days. If you’re an average company (raise your hand if you think you are), it will take you up to 2 months to integrate new data. Do you have that much time? Can you afford to react that slowly to customer or market opportunities? For laggard companies, this really means they’re dead in the water.

Traditional legacy, siloed systems are heavy: incompatible standards and data formats slow or prevents quick integration of existing or existing with new data. This inability to quickly and effectively integrate new data sets for either real-time or predictive analytics limits the ability of organizations to pursue new opportunities, support customer needs, and to drive insights. In short, it limits an organization’s ability to be proactive in revenue-generating situations.

Part of the reason for this time delay and inability to drive the ‘last-mile’ analytics that companies need, is the lack of data management processes. No one needs to explain anymore the myriad of data across organizations and ecosystems: transactional data, operational data, analytical repositories, social media data, mobile device data, sensor data, and structured and unstructured data. Usually a lack of data (with some exceptions) is not the main problem for an organization.

The main problem is how to manage, integrate it, and distribute it (appropriately) so that organizations can nimbly and agilely exploit data and opportunities. The Data Management Association International (DAMA) provides a framework that is a holistic approach to understanding the data and information needs of the enterprise and its stakeholders. Most of my readers already have an awareness of the DAMA ‘wheel’, which highlights ten areas of data management, with data governance as the center point. In addition to the Data Warehousing & Business Intelligence Management pieces of the wheel, other key areas of data management that are important to data integration, analytics and optimization include: data governance, data architecture, master data management, meta data management, and data security.

From a big data perspective, these area help provide answers to the following questions:

  • What data do we have? Where are gaps in data that we need?
  • What data is intellectual property for us that can help us exploit new opportunities?
  • How do we integrate the right data together?
  • How do these data sets relate to each other?
  • Do we have all of the data about this (fill in the blank – person, event, thing, etc.)?
  • What are the permissible purposes of the data? Can we link and leverage these disparate data sets together and still be in regulatory compliance?

Data driven, data centric organizations (best-in-class) consider data needs early and often in the business strategy process. They are not in reactive mode after IT has architected and implemented a solution to then determine what the reporting, analytics, and big data opportunities may be.  Understanding the business strategy and business needs drives strong data management and data governance. Data management and data governance allow the strong management of data assets, so those assets are leverageable for big data purposes in ways that optimizes benefit and return on invest to the organization.

Data management maturity supports big data maturity by providing the policies, processes, and infrastructure to quickly consume, integrate, analyze, and distribute high quality, trusted data to the user’s (employee, executive, customer, business partner) point of touch so that insights can be derived and action taken as rapidly as possible.